Integer Quantum Hall Effect
Classical Hall Effect: Consider a 20 gas of elections with charge e in the presence of a
magnetic fred $\vec{B}=B$ B. We get cgadiston motion.

Now, add an electric fred $\vec{E}=E \hat{y}$. Drift velocity balances the fores:

$$
\dot{F}=0=-e E \hat{y}-e \vec{v} \times \vec{B} \Rightarrow \quad-e \hat{y}-e\left(-v_{x} \hat{y}+v_{y} \hat{x}\right) B=0
$$

Get a current in the x-direction. (elections need to

$$
\begin{aligned}
V_{y} & =0 \\
V_{x} & =E_{y}
\end{aligned}
$$

$$
v_{x}=\frac{E_{y}}{B}
$$

$$
j x=\rho V_{x}=\rho \frac{E_{y}}{B}=\sigma_{x y} E_{y},
$$

$\sigma_{x y}=P / B$ is the "tall conductivity". This follows from Lorentz invoni ave, and is general.

We expects.

We can see liner defrudre for small B

At high B and lour T you find something different gable).

At each plateau: $\sigma_{r y}=n \frac{e^{2}}{h}, \quad n=1,2,3, \ldots$
And $\sigma_{x y}$ is quantized to many decimal places: "Integer Quantum Hall Effect" Later, at higher maguolk fields, they found plateaus at $\sigma_{x y}=\frac{p}{q} \frac{e^{2}}{h}$ for $p, q \in$ Integers "Fractional Quantum Hall Effect"-Inferactions are crucial for FQ HE. Mot IQ HE.

$$
\begin{align*}
& \Rightarrow \psi_{t}=e^{-\int^{\searrow} \frac{m}{v_{f}} d x^{\prime}}\binom{1}{0} \tag{1}\\
& \Rightarrow \psi_{-}=e^{\int_{\frac{x_{m}}{v}}^{v} x_{x}}\binom{0}{1} \\
& \text { Basal on normalization }
\end{align*}
$$

Consider non-inferacting electrons in a uniform magnetic field and elcotric field $(\vec{B}=\beta \hat{z}, \vec{E}=E \hat{y})$. Consider only spinless electrons. De particle problem

$$
H=\frac{(\vec{p}-e \vec{A})^{2}}{2 m}-e E y
$$

World in Landau gauge $\vec{A}=-B_{y} \hat{x} \quad(\vec{\nabla} \times \vec{A}=\vec{B})$. We have

$$
H=\frac{\left(p_{x}+e B y\right)^{2}}{2 m}+\frac{p_{x}^{2}}{2 m}-e E y
$$

$\left[p_{i}, H\right]=0$ so all eigenstates are of the form $e^{i k x} \psi(y), \psi$ is an eiganstate of

$$
\begin{aligned}
H_{k} & =\frac{(k+e B y)^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}-e E y=\frac{k^{2}}{2 m}+\frac{e B k y}{m}+\frac{e^{2} P^{2} y^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}-e E y \\
& =\frac{p_{y}^{2}}{2 m}+\frac{e^{2} B^{2}}{2 m}\left(y-y_{k}\right)^{2}+\text { cons., }, \quad y_{k}=\frac{m E}{e B^{2}}-\frac{k}{e B}
\end{aligned}
$$

Express everything in terms of

$$
\left.\begin{array}{l}
\omega_{c}=\frac{e B}{m} \\
l_{B}=\frac{1}{\sqrt{e B}}
\end{array} \quad \begin{array}{l}
\text { cydoton frequency } \\
\text { manic }
\end{array}\right\} \begin{aligned}
& H_{k}=\frac{P_{2}^{2}}{2 m}+\frac{1}{2} m u_{c}^{2}\left(y-y_{u}\right)^{2}, \quad y_{u}=y_{0}-k l^{2} \\
& \uparrow \\
& y_{0}=\frac{m E}{e B^{2}}
\end{aligned}
$$

Harmonic Oscillator Hamiltonian!
Eigenstates are given by $\psi_{m}\left(y-y_{n}\right)$ where $\psi_{s}=\Omega$ $\psi_{1}=\Omega \Omega, \ldots$
Full solution: $\quad \psi_{k, n}(x, y)=e^{i k x} \psi_{n}\left(y-y_{k}\right)$ with energies $E_{n n}=(n+1 / 2) \omega_{c}-e E y_{k}+\frac{m}{2}\left(\frac{c}{k}\right)^{2}$
First, suppose $E=0$, then $E_{k n}=(n+1 / 2) \omega_{c}$ and all k's have the same energy. huge Deheneraca!
These are "Landau levels." How many states are in a Landau level? Consider a finite size in the x-direction.

$$
h= \pm \frac{2 \pi}{2_{x}}, \pm \frac{c_{\pi}}{L_{x}}, \ldots
$$

Spacing of state:: $\Delta y=y \frac{2(n+1) \pi}{L_{x}}-y \frac{2 n \pi}{L_{x}}=\frac{2 \pi}{L_{x}} l^{2}$ Total Number:

$$
N=\frac{l_{y}}{\left(\frac{\pi l^{2}}{L^{2}}\right)}=\frac{l_{x} l y}{2 \pi l^{2}}
$$

This changes at the boundary, bt we neglect that for now.

$$
\begin{aligned}
& N=\frac{L_{x} l_{y}}{2 \pi} e B=\frac{\Phi_{土 t}}{2 \pi} / e, \frac{2 \pi}{e} \text { is smallest quantum of lox } \Phi_{0} \\
& N=\Phi_{t+t} / \Phi_{0}=\# \text { of fisk quanta in sample. }
\end{aligned}
$$

One state per flux quantum.
Suppose chemical pitantid between $n^{\text {th }}$ and $(n+1)^{\text {th }}$ L.L. Apply a weak elcetriz freed.

$$
\begin{aligned}
I_{u_{n}}^{x} & =\left(\psi_{\text {ken }}\left|\frac{e_{x}-e A_{x}}{m}\right| \psi_{u_{n}} \frac{L_{x}}{L_{x}}=L_{l_{n}}\left|e \frac{h+e B_{x}}{m}\right| \psi_{u_{n}}\right\rangle \frac{1}{L_{x}} \\
& =\frac{1}{l_{x}}\left(\frac{e k}{m}+e^{2} \frac{B_{y_{n}}}{m}\right)=\frac{e}{L_{x}}\left(\frac{E}{B}\right)=\frac{e}{l_{x}} \times\left(d_{\text {d if vebciy }}\right)
\end{aligned}
$$

Adding op all contributions freon all $\psi_{u m}$

$$
J_{x}=\sum \frac{e}{u_{x}} \frac{E}{B}=\frac{1}{l_{y}}\left(n \frac{l x l_{y}}{2 \pi l^{2}}\right)\left(\frac{e E}{L_{x} B}\right)=n \frac{e}{2 \pi l^{2} B} E=n \frac{e^{3}}{2 \pi} E
$$

Putting in \hbar

$$
J_{x}=\frac{n e^{2}}{2 \pi \hbar} E=\frac{n e^{2}}{h} E \Rightarrow \sigma_{x y}=n \frac{e^{2}}{h}
$$

Locus like we've explained the effect but much is missing - disonlens, interactions eth. How does this remain well-quantized?
Laughlin's Flux Argument
Consider a system u/ periodic B.C.'s in x-dir. Hamiltonian with flor 96 is:

$$
H=\sum_{i}\left[\frac{\left(p_{i x}-e A_{x}+e \bar{W}_{x}\right)^{2}}{2 m}+\frac{\left(p_{i y}-e A_{y}\right)^{2}}{2 m}-e E y_{i}\right]
$$

Imagine adiabatically changing Φ from 0 to $\Phi=\Phi_{0}=\frac{2 \pi}{e}$

Ground state will evolve into a state $\Psi_{\Phi} w /$ energy E_{Φ}. Compile $\Delta E=E_{\Phi_{9}}-E_{0}$ in 2 different ways
$1^{\text {It }}$ Way Feynman-Hel(man the (It order perturbation theory)

$$
\begin{aligned}
& \frac{\partial E_{\Phi}}{\partial \Phi}=\left\langle\Psi_{\bar{\Phi}}\right| \frac{\partial H}{\partial \Phi}\left|\Psi_{\bar{T}}\right\rangle=\left\langle\Psi_{\bar{I}}\right| \underbrace{\sum_{i} \frac{P_{i x}-e A x+e \Phi / L_{x}}{m} \frac{e}{L_{x}}\left|\Psi_{\bar{T}}\right\rangle}_{\hat{I}_{x}} \\
& \frac{\partial E_{\bar{F}}}{\partial \Phi}=\left\langle\Psi_{\bar{I}}\right| \hat{I}_{x}\left|\Psi_{\bar{T}}\right\rangle=I_{\Phi} \quad
\end{aligned}
$$

-Follows from Faradays' law: Fox males an EMF $\varepsilon=\frac{\partial \Phi}{\partial t}$ and work is $d W=I \cdot \varepsilon d t=I d \Phi \Longrightarrow d E=I d \Phi \quad w /$ a large loop I_{Φ} essutcally Φ ind $p \Rightarrow \Delta E=I \Phi_{0}=I \frac{2 \pi}{e}$
 All single particle energies are the same - Change comes from repopulating

$$
\begin{aligned}
H_{s p} & =\frac{\left(p_{x}-e A_{x}+e \Phi L_{x}\right)^{2}}{2 m}+\frac{\left(p_{\gamma}-e A_{y}\right)^{2}}{2 m}-e E y \\
& =\frac{\left(p+e B_{y}+e \Phi / L_{x}\right)^{2}}{2 m}+\frac{p_{y}^{2}}{2 m}-e E_{y} \\
& =\frac{\left(p_{x}+e B\left(y+\Phi / B L_{x}\right)\right]^{2}}{2 m}+\frac{p_{x}^{2}}{2 m}-e E\left(y+\Phi / B L_{x}\right)+\text { const. }
\end{aligned}
$$

Adding Φ shifts $y \rightarrow y+\Phi{ }^{2 m}$. When $\Phi=2 \pi / e$ each orbits l shifts by $\Delta y=\frac{2 \pi}{e B L_{x}}=\frac{2 \pi l^{2}}{L_{x}}$ - Exactly the spacing between orbitals,

Each orbital shifts by 1 unit. Net result is that 1 electron per $L L$ transferred from one edge to anuth

With potentisi difference $V=E l y$ we have $\Delta E=n e V=I \frac{2 \pi}{e} \Rightarrow I=\frac{n e^{2}}{2 \pi} V$

$$
\#_{*}^{*} \rightarrow \overbrace{*}^{*} \text { rely } \Rightarrow \text { Hall conductance is } \sigma_{x y}=\frac{n e^{2}}{2 \pi}=\frac{n e^{2}}{h}
$$

Sound familiar?
Integer Quantum Haul Effect 2D "hsulaton" $\sigma_{x<}=0$

$$
\sigma_{\pi_{y}} \neq 0
$$

Lavation Aruumbat

$$
\begin{aligned}
& \Phi(t=0)=0 \\
& \Phi(t=T)=\phi_{0}=h / e
\end{aligned}
$$

$$
\begin{aligned}
& E_{x}=d \Phi / d t \frac{1}{L_{x}} \\
& \quad I=\sigma_{y_{\| x}} \frac{d \Phi}{d t} \frac{1}{L_{x}} \\
& I=L_{x} J=\sigma_{y x} \frac{d \Phi}{d t} \\
& =h / e
\end{aligned}
$$

$\Phi=\phi_{0}$ car be euminated by "lance" uaure transfartatiom in real spate.

$$
\begin{array}{ll}
\psi(r) \rightarrow \psi(r) e^{i \theta(r)} & \Phi=\oint A \cdot d r \Rightarrow \Phi+\underbrace{2 \pi \hbar / e}_{\phi_{0}} \\
A_{e m} \rightarrow A_{e m}+\frac{E}{e} \nabla_{r} \theta(r) & \left.H(\tau)=u^{+}\right)+(0) u \\
\Rightarrow \sigma_{r y}=\frac{n e^{2}}{L} & \Delta P=\int d t I(t)=\int d t \sigma_{k y} \frac{d \Phi}{d t}=\sigma_{x y} \\
e
\end{array}
$$

Add in (weak) interactions / disorder $\left(\approx \omega_{c}\right)$. dust consider it in the bull of the system for simplicity. - Argument immune!

Still pump electron n - otherwise, they accumulate in the bulk - which would add wo energy but by adiabaticity this cont change
$\sigma_{x y}$ robust vales we close the bull gap!
Remarks:

1. Why isn't $\Delta E=0$? According to the adiabatic theorem, ground states evolve int groaned steles. But $1 t$ is the same at beginning and end. So we mist hae
$\triangle E=0$. $\Delta E=0$.
What's going on?

For a. finite size system, this will be an avoided crossing.

$$
\begin{aligned}
& : x \\
& \begin{array}{ll}
x & x \\
x & \text { Differ by fransferring an electron from ore } \\
x & \text { other } \\
x: & (E=0) \\
\therefore: & \left\langle\psi_{\phi}\right| 1+\left|\psi_{\phi}\right\rangle \sim \omega_{c} e^{-l y / e}
\end{array} .
\end{aligned}
$$

\Rightarrow Slower than ω_{c}, faster than $\omega_{c} e^{-l y / e}$
2. Why int $\Delta E>\hbar \omega_{c}$? [Or: where does accumulated aharge go?] System is gaped, yet we constructed excited state $\psi_{\text {玉 }}, W /$ energy smaller than gap ($\Delta E<\hbar \omega_{c}$ for small v).
Answer: System is not gaped \Rightarrow gapless edge states
The IQH edge
Up until nor ueve ignored bang effect. Now, we treat bony more carefully. Firsts suppose $E=0$ $H=\frac{\left(p_{x}-e A_{\Delta}\right)^{2}}{2 m}+\frac{\left(p_{y}-e A_{\gamma}\right)^{2}}{2 m}+V_{\text {edge }}(y)$ where $\quad V_{\text {edge }}(y)= \begin{cases}0, & 0 \leqslant y \leqslant L_{y} \\ \infty, & \text { else }\end{cases}$

$$
A_{x}=-B_{y} y, A_{y}=0_{2} \quad \bar{\psi}(x, y)=e^{i k x} \psi(y)
$$

* eigranstate of

$$
H_{k}=\frac{p_{n}^{2}}{2 m}+\frac{e^{2} B^{2}}{2 m}\left(y-y_{u}\right)^{2}+V_{\text {edge }}(y) \quad y_{k}=-u l^{2}
$$

Case 1: y_{n} is far form the bound arg (distance $\left.>l\right) \Rightarrow$ edge has wo effect and we obtain H.O. eigentithe

$$
\psi_{n}\left(0-y_{n}\right) \approx \psi_{n}\left(l_{y}-y_{n}\right) \approx 0 \Rightarrow E_{k n} \approx(n+1 / 2) \omega_{c}
$$

Case 2: y_{k} is close to the boundary at say $y=l_{y}$

Energy $E_{\text {un }}>(n+1 / 2) \omega_{c}$
Case 3: y_{n} is outside boundary $y-l_{y}>l$
Estimate energy $E_{h n} \approx \frac{e^{2} B^{3}}{2 m}\left(y_{n}-l y\right)^{2}=\frac{e^{2} B^{2}}{2 m}\left(u e^{2}+(y)^{2}\right.$

- The energy goes up quadratically $w \mid k$ for large h. K.

Properties of gapless excitations

1. They are edge excitations: Correspond to changing occupation orbits near the edge. These disappear w/ periodic BC's. in bath directions The bulk is folly gaped.
2. Edge excitations are chiral

$$
\begin{array}{ll}
y_{u} \approx 0, & \frac{\partial E_{a}}{\partial x}=v>0 \\
y_{n} \approx l_{y}, & \frac{\partial E_{a}}{\partial x}=v<0
\end{array} \quad \begin{aligned}
& \text { Any ware packet } \\
& \text { moves night }
\end{aligned}
$$

3. For n filled $U \prime,(v=n)$ there are n edge
 modes in each elirection.
4. Edge modes are protected
$v=1$: We get $n_{n}=2$, right mooing $n_{c}=1$ left moving
$n_{2}-n_{2}=v<$ At least 1 gapless edge mode.

"Toplogically protected"
Fox threading $w /$ edge states $v=n$

$$
\begin{aligned}
& I_{l_{n}}=\left\langle\psi_{k n}\right| \frac{1}{L_{x}} \frac{e}{m}\left(p_{x}-e A_{x}\right)\left|\psi_{k_{n}}\right\rangle \\
& H=\frac{\left(p_{x}-e A_{x}+e \Phi / L x\right)^{2}}{2 m}+\frac{\left(p_{y}-e A_{y}\right)^{2}}{2_{m}}-e E_{y} \\
& I_{k_{n}}=\left(\psi_{k n}\left|\frac{\partial H}{\partial \Psi}\right| \psi_{k n}\right\rangle=\frac{\partial E_{m n}}{\partial \Phi}=\frac{e}{L_{x}} \frac{\partial E_{m n}}{\partial k} \\
& I=\sum_{k n} I_{k n}=\frac{e}{L_{x}} \sum_{k n} \frac{\partial E_{k n}}{\partial k}
\end{aligned}
$$

Different chem. potential © 2 edges μ_{2}, μ_{1}

$$
\begin{aligned}
& \mu_{2}-\mu_{1} \approx e E l_{y} \\
& I \\
& =\sum_{k_{n}} \frac{e}{L_{x}} \frac{\partial E_{u_{n}}}{\partial k}=\sum_{n} \int_{k_{1}}^{k_{2}}\left(\frac{L_{x}}{2 \pi} d k\right) \frac{e}{L_{x}} \frac{\partial E_{k_{n}}}{\partial k}=\frac{n e}{2 \pi}\left(\mu_{1}-\mu_{2}\right) \\
& \\
& =-\frac{n e^{2}}{2 \pi} E l_{y}=-\frac{n e^{2}}{2 \pi} V_{0} \quad V_{0}=E l y=\text { elcetrostatic ullage }
\end{aligned}
$$

$\sigma_{x y}=\frac{n e^{2}}{2 \pi}=\frac{n e^{2}}{h} \quad$ Be
Better defn $V=\frac{\mu_{1}-\rho_{n}}{e}$ Use ruplicitly vas

Next: TKNN

Disorder Digression :
Disorder broadens bands - even L - but $\sigma_{x y}=\frac{n e^{2}}{h}$ is robust - Why? One extended state Conutifractal) - Causes (till

Still open questions!

TKNN - Thouless, Kohmoto, Nightingale, den Nijs (1982)

$$
H=-t \sum_{\vec{r}}\left(\left|\vec{r}+\hat{x}_{a}\right\rangle\langle\vec{r}|+\left|\vec{r}+\hat{y}_{a}\right\rangle\langle\vec{r}|+\text { h.c. }\right)
$$

Energy: $E=-2 t\left[\cos u_{x}+\cos k_{y}\right]$
Add a magnetic field: $\Phi=B a^{2}=\int_{0} \vec{A}(\vec{r}) \cdot d \vec{r}, \quad A_{y}=B x$
Peierls sobstitution:

$$
\frac{\text { Sobstitution: }}{\uparrow}|\vec{r}+\vec{R}\rangle\langle\vec{r}| \longmapsto e^{-i \frac{e}{\hbar} \int_{\underset{r}{r} d \vec{r}}^{\vec{r}} \cdot \vec{A}\left(\vec{r}^{\prime}\right)}|\vec{r}+\vec{R}\rangle\langle\vec{r}|
$$

Minimal Substitution for lattices $[-i \partial x \rightarrow-i \partial \bar{x}-e \vec{A}]$

$$
\begin{aligned}
&|\vec{r}+\vec{R}\rangle\langle\vec{r}|= e^{-i \vec{R} \cdot \partial \vec{r}}|\vec{r}\rangle\langle\vec{r}| \\
& e^{-i \vec{R} \cdot(\overrightarrow{2} x-e \vec{A})}|\vec{r}\rangle\langle\vec{r}| \\
& \Rightarrow H_{B}=-t \sum_{\vec{r}}\left[|\vec{r}+a \hat{x}\rangle\langle\vec{r}|+e^{-i e \vec{t} B \times 4}|\vec{r}+a \hat{y}\rangle\langle\vec{r}|+h . c .\right]
\end{aligned}
$$

Translation symmetry in the y-direction.

$$
H_{B}\left(k_{y}\right)=-t \sum_{x \in a, u}\left[|x+a\rangle\langle x|+|x\rangle\langle x+a|+\cos \left(k_{y} a+e_{\hbar} B x a\right)|x\rangle\langle x|\right]
$$

Electric fred in x-direction: $E_{x}=\frac{\partial A_{x}(t)}{\partial t}$

$$
\begin{aligned}
& \frac{e^{b}}{\hbar} a=\frac{2 \pi p}{q a} \\
& \frac{e B}{\hbar} q a^{2}=2 \pi p \Rightarrow B=\frac{2 \pi \hbar}{e} \frac{p}{q} \frac{1}{a^{2}}=\frac{\Phi_{0}}{a^{2}} \frac{p}{q}
\end{aligned}
$$

We can translate by qa in the x-direction - good unit cell! $x=n_{x} a$ (1+WH2

$$
\begin{aligned}
H_{B}\left(k_{x}, k_{y}\right)=-t\left[\sum _ { n _ { x } = 0 } ^ { q - 2 } \left(e^{-i e} A_{x}\right.\right. & \left.\left.n_{x}+1\right\rangle\left\langle n_{x}\right|\right)+e^{-i k_{x} q a}|0\rangle\langle q-1|+h . c . \\
& \left.\left.+\sum_{n_{x}=0}^{q-1} \cos \left(k_{y} a+\frac{2 \pi p}{q} n_{x}\right) \ln n_{x}\right)\left\langle n_{x}\right|\right]
\end{aligned}
$$

Gauge transformation: $\ln \rangle \rightarrow e^{-i k_{x} n_{x} a}\left|n_{x}\right\rangle$

$$
H_{B}\left(k_{x}, k_{y}\right)=-t \sum_{n_{x}=0}^{q-1}\left(e^{-i\left(\frac{o}{t} A+h_{x} a\right)}{\mid n_{x}+1}^{|c|}\left\langle n_{x} \left\lvert\,+\cos \left(\frac{2 \pi \rho}{q} n_{x}+k_{y} a\right) \ln _{x}\right.\right\rangle\left\langle n_{x}\right|\right)
$$

This has q eigenvectors \& values $\epsilon_{n \vec{k}},\left|u_{n \vec{k}}\right\rangle$
Recall: $J_{y}=\frac{d P y}{d t}=A$ pravization
Note: $\partial_{A}=\frac{e}{\hbar} \frac{1}{a} \partial_{k_{x}}$
And with adiabatic pert. Theory:

$$
\begin{aligned}
\partial_{A} P_{y} & =\frac{-e}{(2 \pi)^{2}} \int_{B z} d^{2} k 2 \operatorname{Im}\left\langle\partial_{A} u_{n \vec{k}} \mid \partial_{u_{y}} u_{n \vec{k}}\right\rangle \\
& =\frac{e^{2}}{h}[\underbrace{-\frac{1}{2 \pi} \int_{B z} d^{2} k 2 \operatorname{Im}\left\langle\partial_{u_{x}} u_{n \vec{k}} \mid \partial_{k_{y}} u_{n \vec{k}}\right\rangle}_{C \in \mathbb{Z}}] \\
J_{y} & =\frac{e^{2}}{h} C E_{x} \Rightarrow \sigma_{y x}=\frac{e^{2}}{h}\left[-\frac{1}{2 \pi} \int_{B z} d^{2} k \Omega_{h x k y}^{0}\right]
\end{aligned}
$$

Berry Curvature!

Remarks: (1) These Chem numbers for gap r satisfy

$$
r=s_{r} p+t_{r} q-\text { integer solution } \Longrightarrow \text { Diophantine eq. }
$$

(2) $\sum C_{r}=0$ - No net Chen number.
(3) TKNNA considered a $L L \mathrm{w} /$ perturbation of lattice
(4) B can be irrational. Ia that case
(A) Spectrum is a Cantor Set (gaps all the way down)
(B) Hofstadter butterfly [w/ Chen numbers]

