Problem 1. Second quantization

In this question c_{i}^{\dagger} and c_{i} are fermion creation and annihilation operators and the states are fermion states. Use the convention $|1111100 \cdots\rangle=c_{5}^{\dagger} c_{4}^{\dagger} c_{3}^{\dagger} c_{2}^{\dagger} c_{1}^{\dagger}|000 \cdots\rangle$.
(a) Use the anticommutation relations for fermions to "normal-order" $c_{3}^{\dagger} c_{6} c_{4} c_{6}^{\dagger} c_{3}$ ("normalorder" means commuting all annihilation operators to the right, so for instance $c_{2} c_{1} c_{1}^{\dagger}$ normal ordered would be $c_{2} c_{1} c_{1}^{\dagger}=-c_{1}^{\dagger} c_{1} c_{2}+c_{2}$).
(b) Evaluate $c_{3}^{\dagger} c_{6} c_{4} c_{6}^{\dagger} c_{3}|111111000 \cdots\rangle$ and $c_{3}^{\dagger} c_{6} c_{4} c_{6}^{\dagger} c_{3}|111110000 \cdots\rangle$.
(c) Write $|1101100100 \cdots\rangle$ in terms of excitations about the "filled Fermi sea" $|\Omega\rangle=$ $|1111100000 \cdots\rangle$. Interpret your answer in terms of electron and hole excitations.
(d) Find $\langle\psi| \hat{N}|\psi\rangle$, where $|\psi\rangle=A|100000\rangle+B|111000\rangle, \hat{N}=\sum_{i} c_{i}^{\dagger} c_{i}$.

Problem 2. Bogoliubov transformations

Consider two fermions a_{1} and a_{2}
(a) Show that the Bogoliubov transformation

$$
\begin{align*}
& c_{1}=u a_{1}+v a_{2}^{\dagger} \tag{1}\\
& c_{2}^{\dagger}=-v a_{1}+u a_{2}^{\dagger} .
\end{align*}
$$

where u and v are real, preserves the canonical anticommutation relations if $u^{2}+v^{2}=1$.
(b) Use this result to show that the Hamiltonian

$$
\begin{equation*}
H=\epsilon\left(a_{1}^{\dagger} a_{1}-a_{2} a_{2}^{\dagger}\right)+\Delta\left(a_{1}^{\dagger} a_{2}^{\dagger}+\text { h.c. }\right), \tag{2}
\end{equation*}
$$

can be diagonalized in the form

$$
\begin{equation*}
H=\sqrt{\epsilon^{2}+\Delta^{2}}\left(c_{1}^{\dagger} c_{1}+c_{2}^{\dagger} c_{2}-1\right) \tag{3}
\end{equation*}
$$

(c) What is the ground-state energy of this Hamiltonian?
(d) Write out the ground-state wavefunction in terms of the original operators a_{1}^{\dagger} and a_{2}^{\dagger} and their corresponding vacuum $|0\rangle$ (i.e., $a_{1,2}|0\rangle=0$).

Problem 3. Self-consistency in BCS superconductivity

In class we derived the following Hamiltonian (which was valid for \mathbf{k} near the Fermi surface)

$$
\begin{equation*}
H=\sum_{\mathbf{k}, \sigma}\left(\epsilon_{\mathbf{k}}-\mu\right) c_{\mathbf{k}, \sigma}^{\dagger} c_{\mathbf{k}, \sigma}-\frac{g}{V} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} c_{\mathbf{k}, \uparrow}^{\dagger} c_{-\mathbf{k}, \downarrow}^{\dagger} c_{-\mathbf{k}^{\prime}, \downarrow} c_{\mathbf{k}^{\prime}, \uparrow} . \tag{4}
\end{equation*}
$$

(a) Repeat the mean-field ansatz $\Delta=-\frac{g}{V}\left\langle\sum_{\mathbf{k}} c_{-\mathbf{k}^{\prime}, \downarrow} c_{\mathbf{k}^{\prime}, \uparrow}\right\rangle$ to obtain the mean-field Hamiltonian

$$
\begin{equation*}
H_{\mathrm{MFT}}=\sum_{\mathbf{k}, \sigma}\left(\epsilon_{\mathbf{k}}-\mu\right) c_{\mathbf{k}, \sigma}^{\dagger} c_{\mathbf{k}, \sigma}+\sum_{\mathbf{k}}\left[\Delta^{*} c_{-\mathbf{k}, \downarrow} c_{\mathbf{k}, \uparrow}+\text { h.c. }\right]+\frac{V}{g}|\Delta|^{2} \tag{5}
\end{equation*}
$$

(b) With what we learned in Problem 2, make a Bogoliubov transformation to put this Hamiltonian into the form

$$
\begin{equation*}
H_{\mathrm{MFT}}=\sum_{\mathbf{k}} E_{\mathbf{k}}\left(a_{\mathbf{k}, \sigma}^{\dagger} a_{\mathbf{k}, \sigma}-1 / 2\right)+\frac{V}{g}|\Delta|^{2} \tag{6}
\end{equation*}
$$

(c) What is the ground-state wave-function for this system (write in terms of the electron vacuum $|0\rangle$ and $c_{\mathbf{k}, \sigma}$ operators)? (Hint: Given the state $|0\rangle$ annihilated by c operators, the state $a_{-\mathbf{k}, \uparrow} a_{\mathbf{k}, \downarrow}|0\rangle$ is annihilated by $a_{-\mathbf{k}, \uparrow}$ and $a_{\mathbf{k}, \downarrow}$.)
(d) Call the wave function from the previous part $\left|\psi_{\mathrm{BCS}}\right\rangle$. Show that the self-consistent equation derived from $\Delta=-\frac{g}{V}\left\langle\sum_{\mathbf{k}} c_{-\mathbf{k}^{\prime}, \downarrow} c_{\mathbf{k}^{\prime}, \uparrow}\right\rangle$ is

$$
\begin{equation*}
\Delta=g \int_{\left|\epsilon_{\mathbf{k}}-\mu\right|<\omega_{D}} \frac{d^{3} k}{(2 \pi)^{3}} \frac{\Delta}{2 \sqrt{\left(\epsilon_{\mathbf{k}}-\mu\right)^{2}+\Delta^{2}}} \tag{7}
\end{equation*}
$$

(e) Finally, find a nonzero approximate solution to (d) in terms of terms of the g, ω_{D}, and the density of states at the Fermi level ρ_{0}. (Approximations are needed, if you get stuck, look up in a book that covers superconductivity).

Problem 4. Braiding Majoranas

Consider the following Hamiltonian for 4 Majorana fermions

$$
\begin{equation*}
H=i \sum_{i=1}^{3} \Delta_{i} \gamma_{0} \gamma_{i} \tag{8}
\end{equation*}
$$

This can be made by taking three wires in the following geometry and tuning the superconducting gap between neighboring pairs.

In this problem, we are using $\left\{\gamma_{i}, \gamma_{j}\right\}=2 \delta_{i j}$.
(a) Put the Hamiltonian in block-diagonal form with $\tilde{\gamma}_{\mu}=\sum_{\nu} O_{\mu \nu} \gamma_{\nu}$ such that

$$
H=\frac{i}{2} \tilde{\gamma}^{T}\left(\begin{array}{cccc}
0 & \epsilon_{1} & 0 & 0 \tag{9}\\
-\epsilon_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \epsilon_{2} \\
0 & 0 & -\epsilon_{2} & 0
\end{array}\right) \tilde{\gamma}
$$

What are ϵ_{1} and ϵ_{2} ? (ensure $\tilde{\gamma}$ are properly normalized)
(b) Define two fermions $c_{1}=\frac{1}{2}\left(\gamma_{1}-i \gamma_{2}\right)$ and $c_{2}=\frac{1}{2}\left(\gamma_{0}-i \gamma_{3}\right)$, and define a basis for the Hilbert space as $|11\rangle=c_{2}^{\dagger} c_{1}^{\dagger}|0\rangle,|10\rangle=c_{1}^{\dagger}|0\rangle,|01\rangle=c_{2}^{\dagger}|0\rangle$, and $c_{1}|0\rangle=0=c_{2}|0\rangle$. What is the Hamiltonian H in this basis? Hint: It will be in the form:

$$
H=\left[\begin{array}{cc}
H_{\text {even }} & 0, \tag{10}\\
0 & H_{\text {odd }} .
\end{array}\right]
$$

where the rows are given by $|00\rangle,|11\rangle,|01\rangle$, and $|10\rangle$ with $H_{\text {even }}$ and $H_{\text {odd }}$ two-by-two matrices.
(c) Note that the parity operator $P=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$ has eigenvalue +1 for $|00\rangle$ and $|11\rangle$ and -1 for $|01\rangle$ and $|10\rangle$. When $\Delta_{1}=0=\Delta_{2}$ what is the ground state manifold of H ? Show that when we restrict to the ground state manifold that $P^{\prime}=i \gamma_{1} \gamma_{2}$ acts the same as P.
(d) For $H_{\text {even }}$ find the ground states when (1) $\Delta_{1,2}=0$, (2) $\Delta_{2,3}=0$, and (3) $\Delta_{1,3}=0$. Compute the Berry phase for the path (1) $\rightarrow(2) \rightarrow(3) \rightarrow(1)$.
(e) Repeat (d) for $H_{\text {odd }}$.
(f) Using the ground states and operator in (c), create a unitary $U=e^{i \phi P^{\prime}}$ that changes each state by the Berry phase computed in (d,e).
(g) Compute $U \gamma_{1} U^{\dagger}$ and $U \gamma_{2} U^{\dagger}$ to show that these Majorana fermions were exchanged we have braided two Majoranas.

