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I. EQUILIBRATION TIME

In this section, we describe our numerical method of computing the free-energy of the implicit

statistical mechanics model describing MIPTs in the generic models. We introduce a method to

cleanly distinguish bulk and boundary contributions to the free-energy.

The entropy of the measurement record F can be viewed as an average of the logarithm of the

probability of a given trajectory, i.e., F = −
∑

m pm ln pm = −
∑

m〈ln pm〉. Here, the expectation

value is taken over an ensemble where each trajectory is weighted by its Born probability. Since

the probability of a given trajectory depends on the product of the Born probabilities of all the

measurements we can write

F = −
Nmeas∑
i=1

〈ln p(mi|mi−1, ...,m1)〉, (1)
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where p(mi|mi−1, ...,m1) is the conditional probability of the set of measurement outcomes mi given

the previous series of measurement outcomes. This result shows that we can perform a Monte Carlo

sampling of the Born probabilities obtained during the simulation to compute F . The entropy is

quite sensitive to the initial conditions at early times as we now describe.

To compute the entropy density, we record the entropy accumulated as a function of time, F (t),

and obtain the density from the slope of the linear fit of the infinite time limit entropy density of

the measurement record F (t → ∞)/L vs t. As an integral, this quantity, at late times takes the

form F (t → ∞)/L = F bdry + tF bulk where F bdry comes from the choice of initial state and F bulk

comes from the steady state wave function. As a result, F (t→∞)/tL = F bdry/t+F bulk indicating

a convergence of 1/t as indicated in Fig. 1a by the solid lines. To uncover when the boundary effects

are saturated, we can take two different initial states, a Haar random initial state and a random

product state, and compute ∆F (t) ≡ FHaar(t) − F product(t) which saturates when the boundary

effects saturate; we observe exactly this in Fig. 1b. Once saturation is achieved, we can effectively

deduce that the wave function has reached the steady state and the average (green) is saturated.

This saturation criteria agrees well with the half-cut entropy shown in the inset of Fig. 1a, and

we conservatively obtain τHaar ∼ τproduct . 2L suggesting we should wait a time τ > 2L before

we begin recording the entropy of the measurement record. For our data we have chosen τ = 4L

and recorded the data for an additional time tf = 24L, where one time step consists of either an

even or odd layer of gates and a layer of measurements. To further improve results, after averaging

over the random Haar and product initial states separately, the results are averaged together. The

error in the entropy density of the measurement record is estimated by computing the entropy

density for individual trajectories and performing a bootstrap analysis [1]. The two initial states

are bootstrapped separately over 1000 samples and their errors are combined using

σ =
1

2

√
σ2

Product + σ2
Haar. (2)

II. ANISOTROPY PARAMETER

In this section, we describe the arguments based on conformal invariance that allow us to

efficiently extract the anisotropy parameter at critical points of random circuits with measurements

in 1+1 dimensions.

To estimate the area, A = αtL, that arises in the free energy density, it is necessary to calculate

the anisotropy parameter, α, that relates space and time, i.e., L = αt. This parameter can be

estimated by comparing the correlation functions along the space and time directions as we describe

below. Using the conformal mapping z′ = f(z) = L
2π ln z (see Fig. 2), we can relate the correlation

functions on the infinite cylinder, g′(z′1, z
′
2), to correlation functions on the plane, g(z1, z2), through

g′(z′1, z
′
2) = |f ′(z1)|−∆|f ′(z2)|−∆g(z1, z2), (3)

where ∆ is the conformal dimension. For a 1+1 dimensional CFT,

g(z1, z2) =
1

|z1 − z2|2∆
(4)
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FIG. 1. (a) Average entropy density of the measurement record after a time t. Due to boundary effects, the

entropy density of the measurement record averaged separately over random Haar and random product initial

states saturates slowly to their common asymptotic value. To limit these effects, we wait an equilibration

time τ = 4L before recording the entropy of the measurement record and then average the two results

together. Data is shown for L = 16, p = 0.17 and 25 000 samples. In the inset, we show that this saturation

criteria agrees well with the half-cut von Neumann entanglement entropy, S1(t). (b) The difference between

the entropy of the measurement records ∆F (t) = FHaar(t)− F product(t).

FIG. 2. The conformal mapping from a plane to a cylinder.

and after applying the transformation to Eq. (4) we have

g′(z′1, z
′
2) =

(π
L

)2∆ 1∣∣sinh
[
π
L (z′1 − z′2)

]∣∣2∆
. (5)

We can extract α from the ratio of the correlation functions

g′space = g′(0, iL/2) =
(π
L

)2∆
(6)

g′time = g′(0, αt) =
(π
L

)2∆
(

2eπαt/L

e2παt/L − 1

)2∆

(7)

g′time

g′space

=

(
2eπαt/L

e2παt/L − 1

)2∆

. (8)

To eliminate the dependence on ∆, we look for the matching time, t∗, at which the space and

time correlation functions acquire the same value. Setting g′time/g
′
space = 1 in Eq. (8), the resulting



4

quadratic equation can be solved for the anisotropy parameter

e2παt∗/L − 2eπαt∗/L − 1 = 0

=⇒ α = ln
(

1 +
√

2
) L

πt∗
.

(9)

To compute this numerically, we calculate the mutual information between two initially locally

entangled reference qubits. We run the unitary-measurement dynamics out to τ1 = 4L, measure

site x1 and entangle this site with a reference qubit. We then run the dynamics out to τ2, measure

site x2 and entangle this site with another reference qubit. After this second event, we follow

the mutual information I12(x1, x2, τ1, τ2) between the two reference qubits as a probe of the order

parameter correlations. We use a space like separation of δx = |x2 − x1| = L/2 with δτ = 0 to

determine g′space and time like separation of δτ = τ2 − τ1 with δx = 0 to determine g′time.

III. LYAPUNOV EXPONENTS

In this section, we describe a procedure that only requires storing a set of vectors that are

iterated upon in order to compute the Lyapunov exopnents.

The Lyapunov exponents of the transfer matrix can be related to the free energy densities that

are used in the calculation of the scaling dimensions of operators in the theory. However, working

with the full transfer matrix becomes exponentially difficult in the system size and an alternative

approach is needed.

We are interested in characterizing the large m behavior of the application of i.i.d. random

transfer matrices Tj ∈ Cd×d to a vector |v0〉 ∈ Cd with j = 1, 2, . . . ,m. This evolution can be

described by the recurrence

|v(j)
0 〉 = Tj |v(j−1)

0 〉, j = 1, 2, ...,m (10)

for some initial normalized vector |v0〉. The randomness of the matrices Tj implies the choice of the

probabily measure on Cd×d. The large m behavior can be characterized by considering the leading

Lyapunov exponent found by the Furstenberg method

λ0(L) = lim
m→∞

1

m
E log

∥∥∥|v(m)
0 〉

∥∥∥ (11)

where E denotes the expectation over the random matrices. Equation (11) is independent of the

initial vector |v0〉 for almost all realizations of the matrices Tj . An alternative definition that makes

the independence on |v0〉 explicit is

λ0(L) = lim
m→∞

1

m
E log

∥∥∥∥∥∥
m∏
j=1

Tj

∥∥∥∥∥∥ (12)

where the matrix norm is the 2-norm, so that
∥∥∥∏m

j=1 Tj
∥∥∥ is the largest singular value of

∏m
j=1 Tj .

The average free energy per site is related to the leading Lyapunov exponent by

f(L) = − 1

αL
λ0(L). (13)
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FIG. 3. Comparison of the free energy density obtained using the entropy of the measurement record based

on the orthogonal vectors with the free energy density obtained using the Lyapunov spectrum based on the

singular values of the transfer matrix. At small system sizes, the Gram-Schmidt orthogonaliztion procedure

quickly zeros out the higher order orthogonal vectors making it difficult to sample at late times. The tilde

in the free energy density denotes that α is not taken into account in the area.

Similarly, the generalized free energies can be related to the higher order Lyapunov exponents

through fi(L) = − 1
αLλi(L). In order to numerically compute λi, we can consider of a set of n

orthogonal vectors {|vk〉} , k = 0, 1, . . . , n− 1 and iteratively apply the transfer matrices, Tj . After

each application of Tj , the set must be orthogonalized again. In Fig. 3 we show that the value of

the free energy density obtained from the Lyapunov spectrum approaches that from the entropy

of the measurement record. At small system sizes, the Gram-Schmidt orthogonalization procedure

quickly zeros out the orthogonal vectors making it difficult to sample at late times. Note that for

the vectors k > 0, the entropy of the measurement record, Fk, must be slightly modified to account

for the orthogonalization procedure and is given by

Fk = −
m∑
j=1

ln
∥∥∥P (j)

GS,kP
(j)
M |v

(j−1)
k 〉

∥∥∥2
, (14)

where P
(j)
GS,k is a projector from the Gram-Schmidt process and P

(j)
M is a projector onto the meau-

rement outcomes in Tj .

IV. HAAR RANDOM CIRCUIT

In this section, we estimate the anisotropy parameter for the Haar random circuit and use it to

compute the effective central charge and scaling dimensions of operators in theory. We also show

evidence of multifractal scaling at the critical point.

We can compute the anisotropy parameter for the Haar random circuit using the procedure

described in Sec. II. The correlation functions along the space and time directions are shown in

Fig. 4. Numerically computing the correlation functions shows that the matching time is between

t = 5L/16 and t = 6L/16. Performing a linear interpolation

t∗ = t5 + [Ispace − I(t5)]
t6 − t5

I(t6)− I(t5)
(15)
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FIG. 4. Haar model space and time correlation functions at pc = 0.170 for L = 16. The matching time, t∗,

lies between t = 5L/16 and t = 6L/16. Using a linear interpolation we estimate the true matching time to

be t∗ = 5.55 and, therefore, α = 0.81(9).

which gives t∗ = 5.55 and α = 0.81± 0.09 with the error bar spanning the range t∗ ∈ [t5, t6].

This anisotropy parameter can be incorporated with the results of the free energy density scaling

shown in Fig. 5 to estimate ceff = 0.25(3). Note that we have introduced a tilde into the notation of

the free energy density, f̃ , to indicate that it does not contain α in the area. The fit to the slope of

f̃(L) in the inset is given by m0(L) = −0.105 + 0.958
L2 . We can also compute the critical exponents,

xtyp
i , from the differences of the generalized free energy densities as shown in Fig. 6. Performing the

double fitting procedure and incorporating α into the result we find xtyp
1 = 0.14(2), xtyp

2 = 0.18(2),

xtyp
3 = 0.23(3). The fits in the inset are given by m1(L) = 0.703 + 1.30

L2 , m2(L) = 0.924 + 15.5
L2 , and

m3(L) = 1.14 + 25.9
L2 . Additionally, we find evidence of multifractality at the critical point based on

the data collapse of H(s) as well as the scaling of the cumulants of lnG1(t), see Fig. 7.

V. DUAL UNITARY

In this section, we determine the critical point of the dual unitary model using the entanglement

transition order parameter. At the critical point, we verify that α = 1 and use it to compute the

effective central charge and scaling dimensions of operators in theory.

As argued in the main text, the transition in the dual unitary model lies in the same universality

class as that of the generic Haar model and is used to provide a more accurate estimate of the

quantities calculated as it constrains α = 1.

The dual unitary circuit model we consider consists of 2-qubit gates of the form [2]

U = eiφ(u+ ⊗ u−) · V [J ] · (v− ⊗ v+) (16)

where φ, J ∈ R, u±, v± ∈ SU(2) and

V [J ] = exp[−i
(π

4
σx ⊗ σx +

π

4
σy ⊗ σy + Jσz ⊗ σz

)
]. (17)
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FIG. 5. The free energy density of the Haar model shows the expected 1/L2 scaling. Using the double fitting

procedure described in the main text we can extract ceff from the slope of the free energy density. For the

Haar model we find ceff = 0.25(3), in agreement with the dual unitary result placing the two models into

the same universality class. The tilde in the free energy density, f̃ , indicates that α has not been taken into

account in the area. Darker blue indicates larger values of Lmin = 8→ 14.
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FIG. 6. Scaling of the generalized free energies in the Haar model. The differences between the free energy

densities can be related to the scaling dimension, xtyp
i , of operators in the theory. In the figure, the tilde,

e.g. f̃i, denotes that we have no included the anisotropy parameter into the area and it will be introduced

in the final result. Using a similar double fitting procedure as for the effective central charge, the typical

values of the first three scaling dimensions are estimated to be xtyp
1 = 0.14(2), xtyp

2 = 0.18(2), xtyp
3 = 0.23(3).

Darker blue indicates larger values of Lmin = 8→ 14.

With this choice, U is unitary in both the space and time directions, i.e., U †U = Ũ †Ũ = 1 where

〈k| ⊗ 〈l|Ũ |i〉 ⊗ |j〉 = 〈j| ⊗ 〈l|U |i〉 ⊗ |k〉. (18)

In the numerical simulations we choose φ, J uniformly from [0, 2π). To find the critical point we look

at the order parameter as a function of the measurement probability p. This is the best measure of

the critical point since there is a strong even/odd effect in the tripartite mutual information (I3)

data. In Fig. 8a we see a clear crossing of the order parameter at pc = 0.14(1). Using this critical

point we can estimate the anisotropy parameter α by measuring correlation functions along the

space and time dimensions as described in Sec. II. Numerically computing the correlation functions
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FIG. 8. (a) Dual unitary order parameter SQ as a function of the measurement probability, p. The critical

point is indicated by the crossing at pc = 0.14(1). (b) and (c) Dual unitary space and time correlation

functions at pc = 0.140 for L = 16. The matching time, t∗, at which the space and time correlation functions

coincide lies between t = 4L/16 and t = 5L/16. Using a linear interpolation we can estimate the true

matching time to be t∗ = 4.44 and, therefore, α = 1.0(1) in agreement with the expectation that α = 1.

shows that the matching time is between t = 4L/16 and t = 5L/16, see Figs. 8b and 8c. We can

get a better estimate of this time by performing a linear interpolation

t∗ = t4 + [Ispace − I(t4)]
t5 − t4

I(t5)− I(t4)
(19)

which gives t∗ = 4.44 and α = 1.0 ± 0.1 with the error bar spanning the range t∗ ∈ [t4, t5]. This

result is in agreement with our expectation that α = 1 by the construction of the gates. In what

follows, we take α to be exactly one, thereby, eliminating the parameter from the calculations and

reducing the error bars in the estimates of all quantities for this model.

The free energy density is shown in the main text where we extract the effective central charge,

ceff = 0.24(2). This value is consistent with the result for the Haar random circuit (see below) but

with much smaller error bars. Additionally, in the main text, we estimated the scaling dimensions,

xtyp
i , of operators in the theory by computing the differences between the free energy densities. The
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FIG. 9. Scaling of the generalized free energies in the dual unitary model. The differences between the

free energy densities can be related to the scaling dimension, xtyp
i , of operators in the theory. Using a

similar double fitting procedure as for the effective central charge, the typical values of the first three scaling

dimensions are estimated to be xtyp
1 = 0.122(1), xtyp

2 = 0.163(1), xtyp
3 = 0.202(1). Darker blue indicates

larger values of Lmin = 8→ 14.

system size dependence used for the double fitting procedure is shown in Fig. 9 and the equation

for each of the fits in the insets are given by m1(L) = 0.766 + 2.16
L2 , m2(L) = 1.03 + 16.1

L2 , and

m3(L) = 1.27 + 28.5
L2 .

VI. STABILIZER CIRCUITS

In this section, we estimate the anisotropy parameter and ceff for the 1+1D random Clifford

model [3].

In the case of a stabilizer circuits, it turns out one can compute the entropy of the measurement

record for a fixed circuit without any sampling by simply counting the number of deterministic

measurement outcomes Ndet out of all measurements

F = (Nmeas −Ndet) log 2, (20)

which follows from the dynamical update rules for stabilizer circuits [4].

In Fig. 10, we show numerical data we have used to estimate α up to system sizes L = 128. In

Fig. 10a, we show the mutual information between two initially locally entangled reference qubits

for space and time-like separations between the reference qubits.

To perform the time-like interpolation we use δx = 0 with the separation δτ = τ2 − τ1 = 6L/16

and 7L/16 that is close to the point where r = 1. As shown in Fig. 10b, at our largest value of

L = 128, we find

α = 0.616± 0.021 (stat.)± 0.0037 (interp.) = 0.616± 0.025 (21)

We have estimated the interpolation error arising from a linear interpolation approximation using
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FIG. 10. (a) Scaled mutual information between two reference qubits for different space and time like

separations at p = 0.1596 for L = 128 with the percolation value η = 5/24. We averaged over 12 · 105

circuits. (b) Extracted α(p, L) for p = 0.1596 up to L = 128.

the formulas

r(τ) ≈ 1− 2
√

2πα∆(τ − t∗) + π2α2∆(1 + 4∆)(τ − t∗)2, (22)

t∗
L

=
τ1

L
+

[1− r(τ1)]δτ

[r(τ2)− r(τ1)]L
+ Error ≈ 0.4579± 0.0028 (interp), (23)

where we used the estimates t∗ = 0.4579, α = 0.616, and ∆ = 0.1042 to approximate the error

term arising from the quadratic correction to r(τ).

The anisotropy parameter as we have defined it will also have corrections due to uncertainty in pc,

which leads to the finite size scaling form α(L/ξ), where ξ ≈ X±/|p−pc|ν . We previously obtained a

quantitative estimate for the prefactor X± = 0.18/0.12 above and below the critical point [5], which

implies that with the currently available precision on pc = 0.1593(5), the expected correlation length

is several hundred to several thousand lattice sites within this uncertainty window. Numerically,

we do not observe any statistically significant dependence of α(p) over this range of p.

FIG. 11. (a) Average entropy density of the measurement record vs 1/L2 for Lmin = 6. (b) Dependence of

the extracted slope vs 1/L2 as a function of the cutoff Lmin.
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With the anisotropy parameter calibrated, we can now numerically compute the average free

energy of the underlying statistical mechanics model. The numerical results are shown for p =

0.1596 in Fig. 11a, where we see the predicted scaling behavior with L. By successively removing

smaller sizes L < Lmin from the fit we can obtain a sequence of values ceff(Lmin). Performing the

fit

ceff(Lmin) = ceff(∞)− b

L2
min

, (24)

allows a reliable method to extract the asymptotic value ceff(∞) [6]. The results of this analysis

are shown in Fig. 11b. To determine the variations with ceff(∞) for different values of p we have

scanned several values near the critical point and find the maximum occurs near p = 0.1596, which

we use as our estimate of the critical point (see Table I). The variation with p throughout this

region is close to the uncertainty in the fits.

TABLE I. Extracted value of ceff for different values of p near the estimated critical point.

p 0.1594 0.1596 0.1598

ceff(∞) 0.3716± 0.0007 0.3729± 0.0016 0.3705± 0.0009

Overall, we obtain the estimate for ceff including statistical errors and the error in the anisotropy

parameter

cseff = 0.3729± 0.0016 (stat.)± 0.016 (anis.) = 0.373± 0.018 (25)

VII. PURIFICATION EXPONENTS IN STABILIZER CIRCUITS AND MINIMAL-CUT

PERCOLATION MODELS

In this section, we compare the order parameter exponent between the minimal-cut/Haar-

Hartley percolation universality class and the stabilizer circuit universality class. We also describe

the numerical method we used to more accurately extract the order parameter exponent for the

stabilizer circuit models.

A. Purification exponents

The von Neumann entropy dynamics S(ρ) of a mixed state ρ = Kmρ0K
†
m/pm evolved under

a stabilizer circuit has qualitatively the same behavior as the Hartley entropy S0(ρ) in the Haar

random model. The latter of which has an exact mapping to a percolation problem through the

minimal-cut procedure developed in Ref. [7]. For this reason, we first benchmark our method on

the Haar-Hartley percolation model. In both models, the relevant entropy changes in discrete steps

of log 2. At the critical point, we have found that the late time decay rate for the relevant entropy

changing from n log 2 to a value < n log 2 saturates to a constant. This behavior is consistent with
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a late time exponential decay behavior for the probability of a circuit maintaining entropy n log 2.

We define the average quantity

∆λn(t) =
1

αL

# Circuits for which S(ρ) goes from n log 2 to a value < n log 2 at time t

# Circuits with S(ρ) = n log 2 at time t− 1
, (26)

Here, α is the anisotropy parameter. In the Haar-Hartley percolation model α = 1. For stabilizer

circuits, we focus on the random dual Clifford model where each two-site gate is chosen uniformly

randomly from the set of dual-unitary Clifford gates. This model is expected to have α = 1 for

each circuit, which we have verified numerically using the method described in the previous section.

This property makes it convenient for numerical analysis similar to the dual-unitary Haar random

model.

To connect this quantity ∆λn(t) to more conventional observables at the critical point, we note

that, if we start with a mixed state with one bit of entropy, then

∆λ1(t) = − 1

αL〈S(ρ)〉
∆〈S(ρ)〉

∆t
, (27)

is just the logarithmic time derivative of the entropy of the mixed state. Within the conformal field

theory picture for percolation and the stabilizer circuit models, we have the relation [8]

lim
t→∞

∆λ1(t) =
2π

L2
x1, (28)

where x1 is the order parameter exponent. Our definition of ∆λn allows us to generalize this

exponent to an infinite family of “purification” exponents. This spectrum of exponents serves as

a more precise comparison between the stabilzer circuit and Haar-Hartley percolation universality

class.

Our numerical results for λn for n = 1 and n = 2 are summarized in Table II. For the random

Clifford model using these methods, we find xp1 = 0.120(5) and xp2 = 0.240(5) with an uncertainty

limited mostly by the uncertainty in the anisotropy parameter. In this case, we observe a significant

difference from Haar-Hartley percolation values only for xp2. On the other hand, for the random

dual Clifford model, we observe that it also has a significant difference in the value of xp1 due to the

smaller numerical uncertainties in the estimated value. This large relative difference in xp1 between

the two models is a strong indication that they lie in separate universality classes.

TABLE II. The first two purification exponents in the random dual Clifford model and the Haar-Hartley

percolation model. To our knowledge, xp2 has not been previously studied in percolation.

Clifford Dual Clifford Haar-Hartley Exact Haar-Hartley Numerics

xp1 0.120(5) 0.111(1) 5/48 = 0.1042 . . . 0.104(1)

xp2 0.240(5) 0.230(1) ??? 0.366(3)

B. Numerical method

Our numerical method used for extracting the purification exponents is illustrated in Fig. 12 for

the Haar-Hartley percolation model and the random dual Clifford model. To improve the numerical
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precision for xp1, we choose different initial conditions whereby the decay rate approaches its late

time plateau from either above or below the plateau value. By averaging these two results, we can

reduce systematic errors in our numerical estimate of the plateau value.
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FIG. 12. (a) Scaled purification rate for the Hartley entropy of the reference system in the Haar random

model at the critical point p = 0.5. The decay rate from entropy n to < n allows us to extract the purification

exponent xpn from the late time plateau. xp1 = x
(1)
1 coincides with the order parameter exponent. (b) Scaled

purification rates for the entropy of the reference system in the random dual Clifford model at p = 0.205 ≈ pc.

For the Haar-Hartley percolation model shown in Fig. 12a, we took an initial state with Hartley

entropy S0(ρ) = 2 or 1, fully scrambled the system with a Haar random circuit, and then turned

on the measurements at the critical rate p = 0.5. In the percolation mapping, the scrambling

layer corresponds to taking a fully connected bottom boundary. To compute S0(ρ), we used the

max-flow/min-cut algorithm applied to a percolating network. With this method, we were able to

extract a value of xp1 that is with 1% of the known percolation value of 5/48. To our knowledge,

the exact values of xpn for n > 1 are not known within the minimal cut picture for the Haar-Hartley

entropy. We provide the first numerical estimate of xp2 here.

For the random dual Clifford model shown in Fig. 12b, the boundary conditions were chosen in

a similar manner to the Haar-Hartley model; however, to improve the rate at which the S(ρ0) = 2

initial condition approaches the plateau, we scrambled the initial condition with a depth L random

circuit that also includes measurements at rate p = pc/1.25. As a result, the quench to the critical

point is less dramatic compared to a fully unitary scrambling circuit. For the initial condition

S(ρ0) = 1, the scrambling layer was taken to be a depth 2L random Clifford circuit in 1D with no

measurements. The critical point pc = 0.205(1) for the random dual Clifford model was obtained

using the order parameter crossing method described in our previous work [9]. The extracted value

of pc strongly violates the Hashing bound for a depolarizing channel that was conjectured to be a

relevant bound on the critical measurement rate pc ≤ 0.1893 for unitary-projective circuits in one

dimension [10].
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VIII. EFFECTIVE CENTRAL CHARGE IN THE LARGE ONSITE HILBERT SPACE

DIMENSION LIMIT

In this section, we derive exact expressions for the effective central charge ceff of the MIPT of

monitored qudit circuits for both Haar and Clifford random gates, in the limit d → ∞ where d

is the dimension of the onsite Hilbert space. Note that, as already recalled in a footnote in the

introductory part of the main text, ceff is not related to the prefactor of the logarithmic scaling with

subsystem size of the entanglement entropy at criticality, which is instead related to the scaling

dimension of boundary condition changing operators [11, 12].

A. Haar case

In the case of Haar gates drawn from the unitary group U(D = d2), we follow Refs. [12, 13] (see

also [11, 14, 15]) to map the anneal averaged replicated partition functions Z̄r =
∑

m pmZ
r
m onto

an effective statistical model (recall, Zm = pm in our formulation), whose degrees of freedom are

permutations gi ∈ S1+r. Formally, this follows from the so-called Schur-Weyl duality, which states

that the permutation group S1+r and the unitary group U(D) act on (CD)⊗(1+r) as a commuting

pair. In the limit d → ∞, the statistical mechanics model simplifies dramatically, and reduces to

a Potts model with |Sr+1| = (r + 1)! states. In the replica limit r → 0, this gives a MIPT in the

percolation universality class [12, 13].

For a finite number of replicas r, this Potts model has a phase transition described by a CFT

with central charge

c(r) = 1− 6

x(x+ 1)
with x+ 1 =

π

arccos

√
(r+1)!

2

. (29)

In the replica limit, we have c(r → 0) = 0, and we can use this expression to evaluate the effective

central charge

cH,d→∞eff = lim
r→0

dc

dr
=

5
√

3(1− γ)

4π
' 0.291367 . . . (30)

with γ ' 0.577216 . . . Euler’s constant.

B. Clifford case

We now turn to a similar calculation in the case of Clifford gates. The full derivation of the

corresponding statistical mechanics model (for the Clifford measurement-induced phase transition

and random tensor networks [11] with Clifford tensors) with on-site Hilbert space dimension d = pn

and p prime will be reported elsewhere [16], where it will also be shown that its symmetry depends

explicitly on p, implying universality of transitions depending on p. Here we simply emphasize the

key ingredients to compute ceff in the limit of large onsite Hilbert space. In order to average over

Clifford gates to derive a statistical model, we will need a generalization of the Schur-Weyl duality.

Let D = d2 with d = pn and p prime. We are interested in the Clifford group C, which is a finite
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subgroup of the unitary group U(D) acting on r + 1 replicas. In general, the “commutant” Fr of

C acting on this space will be larger than the symmetric group Sr+1, and was recently analyzed

in Ref. [17]. In order to analyze the structure of this algebraic object, note that the tensor space

V = (CD)⊗(r+1) can be decomposed onto the irreps Vλ of C as V =
⊕

λ dλVλ. The dimension of

the commutant Fr+1 of the Clifford group C acting on this replicated space is |Fr+1| =
∑

λ d
2
λ,

and can be computed as follows. Let χV (U) = tr U⊗(1+r) be the character of the representation

(CD)⊗(1+r) of the Clifford group C, where U ∈ C is a Clifford gate acting on CD. Introducing the

inner product between characters 〈χ1, χ2〉 = 1
|C|
∑

U∈C χ1(g)χ2(g), we have 〈χV , χV 〉 =
∑

λ d
2
λ. The

dimension of the commutant Fr+1 of the Clifford group – which replaces the symmetric group Sr+1

in the statistical mechanics model – is thus given by

|Fr+1| =
1

|C|
∑
U∈C
|tr U |2(r+1) . (31)

This quantity is known as a “frame potential” in the quantum information literature. In general,

the structure of FQ will depend on d = pn. If we focus on d = 2n with large n (we will report

on the other cases elsewhere [16]), the dimension of the commutant saturates with n to a quantity

strictly larger than (r + 1)! [17]

|Fr+1| =
r−1∏
k=0

(
2k + 1

)
= 2r(r−1)/2

∞∏
k=0

(
1 +

1

2k

)
∞∏
k=0

(
1 +

1

2k+r

) , (32)

where r can be analytically continued to be a real number in the right-hand side. The statistical

mechanics model of monitored Clifford circuits will involve degrees of freedom living in Fr+1, which

in general has a complicated algebraic structure [17], not relevant to us here. In the limit n→∞,

we expect that the statistical mechanics model reduces once again to a Potts model with |Fr+1|
states: this is because any generalization of the Weingarten functions of Haar calculus will become

proportional to delta functions in that limit. This is a large D limit, as in the Haar case (except

there are different ways to approach this limit in the Clifford case, here we set D = p2n and took

n → ∞ with p = 2). The central charge as a function of the number of replicas r is now given by

c(r) = 1− 6
x(x+1) with x+ 1 = π

arccos

√
|Fr+1|

2

. This leads to a closed form expression for the effective

central charge

cC,d=2n→∞
eff =

5
√

3

8π

(
2ψ 1

2

(
−iπ
log 2

)
− log 8

)
' 0.365194 . . . (33)

where ψq(z) is the q-digamma function, which is defined as the derivative of log Γq(z) with respect

to z, where Γq(z) is the q-deformed Gamma function.
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